成果報告:床・壁2) LVLを中心として

東京大学大学院農学生命科学研究科 教授 稲山正弘

LVL-SSP(ストレストスキンパネル)

ストレストスキンパネルとは

幅広のフランジ板とウェブ材から構成する木質ボックスビーム、 単材の梁に比べて成を小さく抑えられるため、天井高の高い 大スパン空間の2階床をつくるのに適している。

LVL-SSP(ストレストスキンパネル)

- 実大SSP曲げ性能
- 接着ビス接合せん断性能
- •長期性能(クリープ)

梁せい mm	300	350	400	450	500	550	600	650
スパン M	5.2	6.3	7.4	8.4	9.4	10.4	11.4	12.0

フランジ・ウェブ:LVL 荷重条件:事務所

1		角担幅	Β.	[mm]	400	400	400	400	400	400	400	400
		全衆せい	H	(mm)	300	350	400	450	500	550	600	650
		フランジ厚	4	[mm]	38	38	38	38	38	38	38	38
		ウェブ厚	r.,	(mm)	50	50	50	50	50	50	50	50
		7523E	Ef	[kN/mm²]	90E_1	505_1	90E_1	905_1	906_1	906_1	500_1	906_1
		ウェプE	E.	[kN/mm²]	120E_1	1206_1	1206_1	1200_1	1206_1	1206_1	1208_1	1206_1
			Function		事務室	事務室	事務室	事務室	事務室	事務室		
		たわみ目的	< 8Hz	[mm]	20319	22214	11048	11020	12568	13276	13854	14608
	2	初期たわみスパンは、(前的の) み)	<1/600	(nm)	6584	9000	10748	11771	12764	13730	14674	1556
	×.	初期にわるスパン法(WUR発 形句書、100mmを行う)	<1/600	(nm)	8100	9200	10200	11200	12100	13100	14000	14900
30		たわみによる最大スパン		(H)	8.1	92	10.2	11.2	12.1	13.1	13.9	14.6
1 S		21700	Ob / web_only	[***]	5247	6000	7457	8450	9493	10677	1140	12394
	5		or bi web	[]	5398	6494	7539	(540)	9534	10509	11469	12415
	•	自然にカによる最大スパン		M	5.2	6.3	7.4	8.4	9.4	10.4	11.4	12.3
	917W			M	21.9	233.0	263.9	293.7	322.4	350.1	374.5	395.3
		許容スで		Ξ	5.2	6.3	7.4	8.4	9.4	10.4	11.4	12.3
		たわみの動物	f.	[PH]	15.3	12.4	10.5	9.3	8.4	7.6	7.0	6.6
		初期たわみ	δ0	[mm]	2.7	2.9	4.0	5.1	6.3	7.5	8.9	10.1
許容。	いつ	XCAL:		н	1/ 1949	1/ 1645	1/ 1/29	1/ 1307	1/ 1207	W 1122	1/ 1001	1/ 1010
and site P		一体新聞としての曲点広力	σι	perma ²]	1.3	1.5	1.7	1.9	2.1	2.2	2.4	2.5
		機定比		H	0.08	0.10	0.12	0.13	0.16	0.15	0.16	0.17

スパン表の考え方

: ウェブ

: フランジ

フランジ: カラマツLVL 38mm 直交層有 カラマツLVL 50mm 直交層無

直交層を入れることで、90度方向の寸法安定性を向上

試験体種類

名称	LVL材種	接着剤	フランジ数	スパン	試験体数	ビス間隔	
L1-6000			1 _	6000	_	200	
L1-9000		\checkmark		9000		200	
L2-6000		\wedge	0 _	6000		150	
L2-9000	フゼ		Z	9000		100	
LB1-6000	74		1 _	6000	_	200	
LB1-9000		\cap	I	9000	_	200	
LB2-6000		U	<u> </u>	6000	_	150	
LB2-9000			Z	9000	_ 久?休	100	
C1-6000			1 _	6000	日の下	200	
<u>C1-9000</u>		$\mathbf{\vee}$		9000		200	
C2-6000		\wedge	0	6000		150	
C2-9000	カラマツ -		Z	9000	_	100	
CB1-6000			1 _	6000	_	200	
CB1-9000		\cap	I	9000	_	200	
CB2-6000		U	· · ·	6000	_	150	
CB2-9000			Ζ -	9000		100	

フランジとウェブの接着ビス止めの仕様

安全一里 TALSO BEEN DUUES IN

SSP試験体の製造工程

LB2-6000 ウェブの曲げ破壊(左)

端部直交単板のrolling shear(右)

実大曲げ試験の荷重-変位グラフ

実大曲げ性能の推定式

初期剛性 $K = \left(\frac{23L^3}{6^4 EI} + \frac{L_s S_x}{4G\sum b \cdot I_a}\right)^{-1}$

直交単板のローリングシアーで決まる最大耐力 $P_{\text{max}} = 2Q_{\text{max}} = \frac{2\sigma_r \sum b \cdot I_q}{S_1}$

ウェブの曲げ破壊で決まる最大耐力

$$P_{\rm max} = 6Z\sigma_b / L$$

実大曲げ試験の実験値と推定値の比較

LB1-6000

LB1-9000

公共建築物における LVL-SSPの実例

林業機械化センター 研修棟の2階床LVL-SSP

群馬県安中市立九十九小学校の2階床LVL-SSP

群馬県安中市立九十九小学校の2階床LVL-SSP

LVL-SSP:成600×幅2.5m×長18m

イケア、フィンランド(メッツァウッド)

接着剤を併用したビス留め部の接合性能 1. 概要

 水平構面の剛性向上や床鳴り 防止などを目的とした床根太用 接着剤が普及

- 幅広い環境条件と許容度の広
 い作業条件で安定した接着性能を有することが認められ、現場施工対応としてJIS A5550で規定された。
- JIS A5550では各種接着・養生条件下における基準せん断強度が規定されているが、剛性、ばらつきの評価などは行われない。
- 接着剤・ビス留めを併用したSSPを設計するため、接合部性能を評価した。

接着剤を併用したビス留め部の接合性能 2. 試験方法

- 一面せん断試験により評価。
- ビス留め部周辺のみ
 に塗布した接着剤を 接合部1箇所と定義。
- ・接合・養生条件による低減も考慮。
- 実際のSSP(全面塗 布)とも比較。

接着剤を併用したビス留め部の接合性能 3. 結果

接着剤を併用したビス留め部の接合性能 4.計算結果のまとめ

図 静的曲げ試験結果

No	最大荷重	降伏点荷重	降伏点変位	初期剛性
	kN	kN	mm	kN/mm
CB2-6000①150	261.8	158.8	24.42	6.504
CB2-6000@150	287.3	164.1	24.51	6.695
CB2-6000@150	248.4	145.0	23.04	6.293
平均値	265.8	156.0	23.99	6.497
標準偏差	19.8	9.87	0.82	0.20

図 荷重継続時間(5週間経過)と中央変形量及び温湿度の関係

表 24時間後からのクリープ試験の解析結果(5週間経過時点)

d_{24h}	R^2	傾き _f	切片 e	d 50year	<i>d</i> 50year/ <i>d</i> 24h	K_{50year}
25.89	0.965	-0.0326	0.0592	39.42	1.52	0.657

※*d*_{24h}:24時間後の中央たわみ(mm), *R*²:log₁₀*K*_t とlog₁₀*t* の回帰直線の決定係数, *f*:log₁₀*K*_t とlog₁₀*t* の回帰直線の傾き, *e*:log₁₀*K*_t とlog₁₀*t* の回帰直線の切片, *d*_{50year}:50 年後の中央たわみの予測値(mm), *K*_{50yea}r:荷重継続時間50 年に 対するクリープたわみ比の予測値。

図 クリープ係数(d_{tmin}/d_{1min})と荷重継続時間

LVL厚板耐力壁の 性能確認試験

厚板耐力壁による 木造住宅の例(I邸)

厚板壁による大規模木造建築の例(ウトコリミテッド)

LSB・GIR壁試験

GIR壁試験体

壁仕様 LVL 12OE 1級 厚150×幅1000×高3000 mm

-⁶⁰ 00 00 01 00 01 01 01 ——GIR壁-1 ——GIR壁-2 -GIR壁-3 見かけのせん断変形角(×10⁻³rad)

"GIR壁-1~3"の包絡線比較

G丨R壁試験

GIR壁 試験結果

	加力方法		終局耐力	_ /	1/120rad.	最大荷重時	
試験体記号		降伏耐力Py	Pu×(0.2/D s)	2/3Pmax	時の荷重	Pmax	δ max
		[kN]	[kN]	[kN]	[kN]	[k N]	[rad.]
GIR壁-1	正負交番 繰返し加	63.26	75.55	74.13	73.55	111.19	57.22
GIR壁-2		66.94	73.87	74.93	70.29	112.40	57.42
GIR壁−3	73	67.91	72.84	74.51	72.50	111.77	53.90
平均		66.04	74.09	74.52	72.11	111.79	56.18
標準偏差		2.45	1.37	0.40	1.66		
変動係数		0.037	0.018	0.005	0.023		
ばらつき係数 ※2		0.983	0.992	0.998	0.989	_	
短期基準せん断耐力P ₀		64.92	73.50	74.37	71.32		
短期許容せん断耐力P _a		64.92	73.50	74.37	71.32		
壁倍率	33.12			_			

- GIR(伸びる部分)の破断
- ・ 面材(LVL)の破壊は確認されなかった。
- 高い変形性能

"LSB壁-1~3"の包絡線比較

LSB壁 試験結果

	加力方法	終局耐力		2 (25	1/120rad.時	最大荷重時	
試験体記号		降伏耐力Py	y Pu \times (0.2/D 2/3Pmax s)	2/3Pmax	の荷重	Pmax	δmax
		[kN]	[kN]	[kN]	[kN]	[k N]	[rad.]
LSB壁-1		68.34	27.57	69.61	94.15	104.41	12.26
LSB壁-2	正負交番 繰返し加力	63.23	29.04	77.41	89.10	116.12	12.16
LSB壁-3		65.07	29.55	79.05	94.71	118.57	12.21
平均		65.55	28.72	75.36	92.65	113.03	12.21
標準偏差		2.59	1.03	5.04	3.09		
変動係数		0.040	0.036	0.067	0.033		
ばらつき係数 ※2		0.981	0.983	0.968	0.984	—	
短期基準せん断耐力P ₀		64.30	28.23	72.95	91.17		
短期許容せん断す	64.30	28.23	72.95	91.17			
壁倍率	—	14.40	—	—			

破壊性状

- ハイテンションボルトの破断
- ・ 一部で面材(LVL)に亀裂が確認された。
- 靭性があまり無い。

LSB壁試験

GIR・LSB壁の比較

まとめ

- GIR耐力壁 短期許容せん断耐力 64.9kN/m
 (壁倍率相当 33倍)
- LSB耐力壁 短期許容せん断耐力 28.2kN/m
 (壁倍率相当 14倍)
- 大規模木造建築の高耐力壁や、S造・RC造の建物 向けのハイブリット構造部材としての使用を検討中